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Final Technical Report

ULTRA HIGH PRESSURE AIR PROPERTIES AND CFD CODE

GRANT FA9550-04-1-0089

Charles L. Merkle
Schools of Astronautics and Aeronautical Engineering and Mechanical Engineering

Purdue University, West Lafayette

Abstract
The research objectives are to develop effective procedures for computing fluid flow at
ultra high pressures where fluids exhibit very different thermodynamic behavior than the
perfect gas and incompressible fluid models that are commonly used in CFD simulations.
Three issues to be addressed include: developing RANS algorithms for arbitrary fluid
applications; developing efficient properties evaluation procedures for arbitrary fluids;
and extending hybrid RANS-LES algorithms to high pressures. All three of these issues
have been demonstrated. A generalized fluid model that is independent of the equation of
state has been developed and demonstrated for a wide variety of flows. An adaptive
properties evaluation method that is competitive in time with perfect gas calculations but
allows highly complex EOS routines like REFPROP, tabular properties data, or simple
algebraic relations (such as Peng-Robinson) has been developed. Results for hybrid
RANS-LES models that take advantage of the arbitrary scaling used for convergence and
accuracy control in the general EOS formulation have also been demonstrated. The
hybrid method is efficient at lower cell aspect ratios below 100. Additional work is
needed to provide the desired robustness at cell aspect ratios of 1000 and higher. The
general equation of state method has been applied to a number of supercritical fluid
applications including regenerative heat transfer in a rocket engine chamber and
preliminary solutions for combustion problems in which the fuel or oxidizer is
supercritical prior to burning. In addition the general equation methodology has been
applied to Maxwell's equations to provide a hyperbolic time-marching method that
applies in either wave-like Maxwell regimes, or in diffusion-like MHD regimes.

Introduction

Numerous Air Force T&E applications use fluids at ultra high pressures where complex
equations of state are required. CFD solutions at these pressures require that the
equations be expressed in a form applicable to liquids, vapors and supercritical regions.
The numerical algorithm must be applicable over all thermodynamic regimes and across
all Mach number ranges. The representative thermodynamics at these conditions are
described by advanced EOS techniques such as REFPROP' which has currently been
updated in a companion effort.2 The foundations of the numerical algorithms were
developed previously based upon an appropriate scaling of the equations, but have been
updated in the present work. An efficient properties evaluation procedure has been be
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devised to ensure effective incorporation in CFD codes. Finally, high Reynolds numbers

applications require extensions of LES turbulence techniques to these general fluids.

Equation Formulation

The general equations of motion for multi-component, multi-phase fluids can be
expressed in the divergence form, V * . = 0, where V is a four-dimensional space-time
operator and . = Qi, + Ei, + Fiy + Gi z . The temporal flux vector includes the density,

velocity components, pressure and stagnation enthalpy, Q = (p. pu, pv, pw, ph -p

with similar terms for the spatial fluxes. Numerical solutions do not allow the use of
density as an independent variable in thermodynamic ranges where density is essentially
constant (liquids), so Q cannot be used as the primary dependent variable. This difficulty
can be circumvented by introducing a pseudo-time term, r, for time-marching and

choosing the primitive variables, Qp = (p,u,v,w,T )T, as the solution variable so that the

equation system is expressed as, FDQPD-r + V 9. = 0. The pseudo-time coefficient, F,

provides dimensional consistency and depends on the equation of state through the
property derivatives pp, pT, hp, and hT which can be obtained from the Gibbs

function.2 Appropriate scaling of the equations indicates that efficient convergence and
uniform solution accuracy over all thermodynamic and Mach number regimes may be
achieved by replacing the physical property, pp, by an artificial property, p' that is

based upon the Mach, Reynolds, Strouhal and Froude numbers of the problem.

Properties Evaluation Procedure

Having set the equations of motion and the algorithm, efficient properties evaluation can
be obtained by using a Cartesian adaptive table look-up procedure that enables user-
defined accuracy over the thermodynamic domain of interest. The Cartesian adaptive
method results in a tree structure that provides search procedures in highly non-uniform
tables that are competitive with equally spaced tables while also providing the high
accuracies in both the thermodynamic functions and their derivatives that are required for
CFD calculations. Representative results for CO2 in Fig. I show the grid for a 0.1%
accurate solution. The evaluation efficiency of this method in REFPROP tables shows a
speed increase between two to three orders of magnitude and CFD computations based on
the arbitrary fluid require essentially the same CPU time as those based on a perfect gas.
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Figure 1. Adaptive interpolation maps for C0 2 - 102 < p < 103 MPa, 500 < T < 1600 K.
Left: 1 % accuracy, 22,000 points, Right: 0. 1% accuracy, 225,000 points.

Three levels of interpolation accuracy have been considered: C°, C, and C 2. As is
discussed in more detail below, at all three levels of accuracy the final square domains are
broken into triangles over which bi-variate interpolation is accomplished. Cell
boundaries across which a change in refinement level result in property discontinuities
that can adversely impact CFD convergence and accuracy unless care is taken to generate
triangles that are consistent with the grid refinement. For the Co interpolation, the two
thermodynamic functions and their derivatives are all taken as independent linear
functions. This implies the derivatives are not consistent with the functions, but ensures
derivative continuity across interpolation cell boundaries. The C' interpolation uses fifth-
order interpolation to give second-order continuity in density and enthalpy at all
triangular boundaries. The enthalpy and its derivatives are then evaluated consistently in
each triangle and are continuous at cell boundaries. The density and its derivatives are
similarly consistent and continuous. The C 2 interpolation uses ninth-order interpolation
to give second-order continuity in the Gibbs function so that the enthalpy, density and all
four derivatives are mutually consistent and continuous. Results show that all three
methods provide effective CFD solutions.

Thermodynamic Consistency and Function Continuity in Properties Reconstruction

For a fluid computation based upon primitive variables, the six thermodynamic
properties, p, p,, pT, h , hp, and h,, and the two transport properties, P and k, must be

evaluated as a function of p and T at every cell and every iteration. There are several
potential ways to employ Cartesian adaptive methods to store and recover the data. The
most straightforward approach is to store all eight properties at each node of the Cartesian
grid and reconstruct all eight properties independently. While this procedure can provide
continuous functions across cell boundaries, it produces inconsistent results because it
ignores the interdependency of the density and the enthalpy and the four thermodynamic
derivatives. To incorporate this characteristic in CFD solutions, the consistency of the
property evaluations must be considered.



Thermodynamic consistency in property evaluations has been discussed by Swesty, 5 who
used the Helmholtz free energy as a basis function. His results, which were based on
much coarser meshes (and correspondingly lower accuracies) than the ones contemplated
here, show that failing to include proper consistency conditions in thermodynamic
reconstruction can lead to significant errors in flowfield solutions. Our experience with
fine grid interpolation normally keeps the inconsistencies to acceptable levels so that we
can use either consistent or inconsistent properties evaluation. Swesty used higher-order
reconstruction to maintain second-order consistency throughout a piece-wise continuous
domain of quadrilaterals. In analogous fashion, we consider three different levels of
reconstruction involving Ce, C', and C2 continuity across cell boundaries whose results
range from partially to fully consistent. In place of the quadrilateral sub-domains used by
Swesty, we reconstruct the property functions over triangles in the mapped domain. With
the global structure maintained through the quadrilateral grid, properties are retrieved by
first locating the triangle in which their given p and Tconditions lie and then using stored
values at the vertices to interpolate to the desired degree of accuracy during a numerical
simulation.
In the CO method, values for all thermodynamic and transport properties are stored at the
vertices of each square in the mapped plane. The squares are then subdivided into
triangles and the values of each function at the three vertices are used to construct
independent bi-linear reconstruction functions for each property. The bi-linear
reconstruction used in the CO method therefore ensures function continuity along all faces
of adjacent cells of the same size for all eight fluid properties but does not provide
internal consistency inside the triangles. For example, both density and its first
derivatives vary linearly over each triangular region. Further, the enthalpy and density
have no interdependence on each other. Nevertheless, by taking the six properties stored
at the vertices from a consistent thermodynamic database, the internal inconsistencies
remain small on a fine grid.
The alternative of using linear reconstruction over all triangles for the density and
enthalpy and differentiating these linear functions to obtain the property derivatives gives
improved consistency, but introduces derivative discontinuities at the cell faces.
Experience shows that these derivative discontinuities are much more detrimental to CFD
solutions than the inconsistencies.
To incorporate property consistency in the reconstructed results we use bivariate
polynomials of the form

22 
23,

z(x,.y)= jjq , q.x'y
j (1

to represent the local solution. The number of undetermined constants in a polynomial of
degree n is (n + lXn + 2)/2. One advantage of the Cartesian subdivision is that these

polynomials are especially suitable for triangles. The theory and implementation of
polynomials on triangular meshes is well documented (see, for example, Akimo 6 and
Preusser, 7) and both C' and C2 reconstruction methods based upon the polynomial
expansion of Eq. 1 have been considered. The C' reconstruction provides consistency
between density and its partial derivatives and enthalpy and its partial derivatives, but
does not provide consistency between density and enthalpy. We refer to the C'



reconstruction as partially consistent. The C2 reconstruction provides fully consistent
results. Details of both methods are given below.
The C' method treats the density and enthalpy as unrelated functions that are each
handled in analogous fashion. Using the density as an example, the goal of C'
reconstruction is to reconstruct the density function in such a manner that the values of
p, p, and p, are consistent within any given cell and that all three quantities are

continuous across cell boundaries (i.e., the density is C' continuous while the derivatives
are C continuous). This level of consistency and continuity can be achieved by using a
bi-quintic (fifth-order) polynomial of the form given in Eq. 1. The construction of a bi-
quintic polynomial requires the determination of 21 coefficients. Storing the values of
the density and its derivatives up to second order at each of the three vertices provides 18
conditions. The remaining three come from the requirement that the derivatives in the
direction normal to each edge be continuous. This can be done either by prescribing the
normal derivatives or by reducing the order of the polynomials. The later choice is the

6known as the 'condensation of parameters' method. Since the density and enthalpy are
treated independently, the enthalpy and its first two derivatives must also be stored at all
vertices. Similar consistency and continuity are then ensured for the enthalpy and its first
derivatives. The enthalpy and density are, however, unrelated on a given region so that
consistency between these two functions is not guaranteed. Nevertheless, if both density
and enthalpy are taken from a database such as REFPROP that is itself consistent, the
degree of inconsistency in the C' approximation is small.
The C2 method interpolates all properties and their derivatives by reconstructing the
Gibbs function as a ninth-order polynomial which requires the determination of 55
coefficients. Of these, 45 are determined by storing the Gibbs function and its derivatives
up to fourth order on the three vertices. Requiring C2-continuity on each of the edges
provides another nine conditions. The final condition can be specified at will without
violating the smoothness constraints, while still keeping the fit to the nodal data.
Additional details of the formulation are given in the literature.6 In the C2 method, only
the Gibbs function is reconstructed and all six thermodynamic properties are computed
from this single function resulting in properties that are fully consistent with each other
and the underlying Gibbs function. All six thermodynamic properties are based upon
higher order variations of the Gibbs function across each triangle with first- and second-
derivative continuity across all adjoining faces. This results in consistency and continuity
among all six properties. The resulting density and enthalpy reconstructions are
consistent and C4 continuous, while their derivatives are consistent and Co continuous.
For all three reconstruction levels, the coefficients of the piecewise function are stored for
each triangle once they have been calculated and need not be updated in CFD
calculations. In the following section we discuss appropriate triangulation methods for
effectively implementing the C, C, and Cz methods on the adaptive Cartesian grid.
Trian2gulation on Unequally Sized Squares. In equally spaced regions of a Cartesian
mesh where all neighbors are the same size, the squares can be split into triangles by
dividing along either diagonal and any of the three reconstruction methods described
above can be applied on the resulting triangles. The situation is somewhat more complex
when two neighboring cells are unequal. For example, the line I shown in Fig. 2 which
crosses face AF between cells of two different refinement levels. The simple diagonal



triangulation indicated in Fig. 2 results in a property discontinuity at this interface for
either the C, C' or C 2 reconstruction procedures because the properties on the left side of

the interface (point, PL) are determined by values of the function at vertices A and F,
while those on the right side (point PR) are determined by vertices A and D.

E A'

/!

Figure 2. Details of diagonal triangulation on a square mesh at a change in cell size.

This difficulty is demonstrated in Fig. 3 which compares the reconstructions along line I
of the density (left) and its pressure derivative, p,, (right), based upon the triangulation

shown in Fig. 2 with the exact solution as functions of temperature. In addition, the
reconstruction based upon an alternative triangulation discussed below is also presented.
The discontinuity at the interface for the simple diagonal triangulation (Fig. 4) is readily
visible. The reconstructions in Fig. 3 were obtained by using the e method, but
reconstructions based on C' or C exhibit similar discontinuities. Further, the

discontinuity exists regardless of which diagonal is used to bisect the squares.
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Figure 3. Reconstructed values of p and pp for triangulations in Fig. 2 (Long dashed line)

and Fig. 6 (short-dashed and dotted lines) along line I in Figs. 2 and 6. Exact solution given by
dotted points.



To demonstrate the impact that discontinuities of this nature have on CFD calculations,
we show the results of one-dimensional CFD solution on Fig. 4 and the corresponding
convergence plots on Fig. 5. The axial variation of the temperature in Fig. 4 indicates
that the discontinuity in properties at a cell size change produces an unphysical wiggle in
the solution. The corresponding convergence curve on Fig. 5 also indicates that
convergence stalls when it reaches a level consistent with the magnitude of the
discontinuity in the reconstructed functions. The remaining convergence curves are
discussed below.
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Figure 4. Temperature variation in 1-D computational solution with reconstruction based
on diagonally divided squares (Fig. 2) illustrating wiggles created in solution by property
discontinuities at cell faces.

Modified Trianaulation for Ensuring Continuity. The difficulties arising from
unequally sized squares can be rectified by triangulating the Cartesian mesh in a manner
that ensures the reconstructions on both sides of the interface are based on the same data.
One acceptable triangulation pattern for a cell with two refined and two unrefined
neighbors is demonstrated in Fig. 6. As shown by the subdivision in the figure, the
properties on the left and right sides of the boundary at point P are each based upon
similar values and result in the specified degree of function continuity. The
reconstructions of the properties along line 1 across the boundary are now both
determined by the values at A and F. The continuity of the piecewise function across the
interface is thus guaranteed as exhibited by the C0, C' and C2 reconstruction curves in
Fig. 5. The C reconstruction results in a small local error, but this has no adverse impact
on the convergence rate (Fig. 7) or the solution (not shown). The reconstructed functions
for the C1 and C2 reconstruction also provide excellent convergence as Fig. 7 shows.
Finally, Fig. 7 shows the convergence rate for a solution for which the properties were
taken directly from REFPROP without any reconstruction method. This 'exact' property
evaluation method resulted in exactly the same convergence as any of the three



reconstruction levels (although it took much more CPU time). Consequently, we see that
a proper triangulation results in both efficient convergence and accurate solutions.
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Figure 5. Exemplary plot showing effect of triangulation on convergence of a specific CFD
calculation. Red: Triangulation taken from Fig. 4; Green, blue and violet: Triangulation
taken from Fig. 6; Triangles: properties evaluated directly from REFPROP.
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Figure 6. Triangulation method chosen to ensure continuous reconstruction in a region
between two cell sizes.

Similar triangulations can be found for nearly any type of mesh topology, but to limit the
number of patterns to a countable level, we prohibit cell level changes greater than one in
neighboring cells during the initial database setup. Thus the ratio of face length in two
adjacent cells will be either one or two. This limitation, which is also commonly used in
tree-based adaptive grid methods, 1617 reduces the number of patterns to six: cells with
four undivided faces, cells with one divided and three undivided faces; cells with two



adjacent faces divided; cells with two opposite faces divided; cells with three faces
divided; and cells with all four faces divided. These six patterns are shown in Fig. 7
along with appropriate triangulations. Because only six patterns must be recognized, the
logic for the triangulation is straightforward and the overhead for locating the triangles
within a given square is small so that the search advantage of the Cartesian mesh is not
lost. The reconstruction process applies equally to any triangle whether it is a portion of a
regular region of the mesh or one with unequal sides. Consequently, the modified
triangulation adds no complexity to the reconstruction procedure and allows the overall
structure of the Cartesian grid to be retained.

Figure 7. Six possible cell refinement patterns indicating acceptable triangulation patterns for
each.

Storage and Timing Comparisons Next we present some timing comparisons for the
adaptive reconstruction procedure and some representative reconstruction results. We
consider properties evaluations for three fluids, C02, H20 and air. Statistically
significant information for timing is obtained by considering several different zones in the
p-T domain for each fluid. Some of the reconstruction regions include the discontinuity
across the liquid-vapor line while some are restricted to continuous property regions. For
these two-phase regions, we also compare thermodynamic procedures that treat the two
phases as a single fluid with procedures that treat them as two distinct fluids. Following
the definition of these various zones, we show the tree-structure grid for reconstruction to
both I% and 0. 1% accuracy. Finally we compare the time required for the table look-up
procedure and the complete REFPROP solution.
Figure 8 shows the density Of C02 as a function of pressure and temperature as obtained
from REFPROP. The liquid-vapor line is shown along with the global density variation.
Four different rectangular zones are used for reconstruction databases. Zone I comprises
the temperature and pressure ranges, 500K:< T!< 1600K, O.OIMPa < p < I OOOMPa and

lies entirely within the vapor region. The grid structures for this zone are shown on Fig. 9
for accuracies of I% and 0. 1%. The grid color is keyed to the magnitude of the density.
The 1% accuracy case requires a total of ten levels of refinement and results in 22,000
reconstruction points. The 0. 1% case requires I11 refinement levels and 225,000 points.
Similar results are obtained for Zones 2 and 3. The table fit and reconstruction are done
on the basis of the logarithm of the pressure. The size of the reconstruction maps is
summarized in Table 1.
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Figure 8. Density of C0 2 as a function of pressure and temperature (from REFPROP).
Reconstruction databases have been obtained for four zones: Zones I and 2 do not include the
vanor-liouid line: Zones 3 and 4 overlan the discontinuitv.

3, 3

" ":: :iit i i  ii:: ..............

000 F.0 amE $20 0 000 tow 1200 1400 Ii60
"~,~T ,

Figure 9. Adaptive reconstruction maps for Zone I of CO0 (see Fig. 10). Left: I % accuracy,
22,000 points; Right: 0.1% accuracy, 225,000 points. Timing evaluations made by performing

Zones 3 and 4 of the CO2 map cross the liquid vapor line where the density is
discontinuous. Maps with accuracies of 1% and 0.1% are shown on Fig. 10. The
presence of the discontinuity implies that the refinement criterion can never be satisfied at
the liquid-vapor line. We have arbitrarily terminated the refinement process for this case



at 15 levels. This implies that the errors will be less than the stated values at all locations
except those immediately adjacent to the liquid-vapor line.

05 . ... . . .... .. 05

. / . 0 . -: i: ! . . ,. 00

~~~0 05- -. r

. ...~ : , . ..

.5• -IS . ... ._

T[2[

Figure 10. Adaptive reconstruction maps for Zone 4 (Fig. 10) of CO2 . Left: I% accuracy, 72,703
points; Right: 0.1% accuracy, 108,384 points. Domain location: 220K < T < 500K;

An alternative reconstruction map for the C0 2, Zone 4 domain, is given in Fig. 11 but
with the vapor and liquid regions broken into two separate curve fits. Because it is no
longer necessary to attempt to interpolate across the discontinuity, the number of
reconstruction cells for a given accuracy is reduced dramatically. At the 1% accuracy
level, the number of cells reduces from 22,000 for the continuous fit across the
discontinuity to 5336 points in the vapor and 225 points in the liquid. Thus a total of
5561 points (and only ten levels of refinement) give the same (or slightly improved)
accuracy in the 'two-phase' description as in the 'single-phase' description. For the 0. 1 %
accuracy map, the number of reconstruction cells is reduced from 108,000 to 52,296 in
the vapor plus 1102 points in the liquid region.
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Figure 11. Adaptive interpolation maps for Zone 4 of CO2 (see Fig. 10). Left: 1% accuracy, 225
points in liquid zone, 5336 points in vapor zone; Right: 0.1% accuracy, 1102 points in liquid zone,



Similar properties databases have been generated for water and air. The density contour
maps for these two fluids are shown in Figs. 12 and 13 along with two zones for which
properties data have been generated in a manner similar to that discussed above for CO2.
For brevity, the Cartesian maps for these cases are not given here, but the resulting table
sizes a d the reconstruction times are included in Table I discussed below.
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Figure 12. Density of H20 as a function of pressure and
temperature (taken from REFPROP). Interpolation databases
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Figure 13. Density of Air as a function of pressure and temperature (taken
from REFPROP). Interpolation databases have been obtained for the two
zones indicated.



CPU Comparisons with Co Reconstruction Method. An assessment of the property
evaluation times required for the adaptive reconstruction procedure as compared to that
for the original REFPROP routine is given in the bar chart on Fig. 14. Timing
comparisons are shown for four zones of carbon dioxide, two zones of water and two
zones of air. The evaluation times are plotted on a logarithmic scale with three bars given
for each fluid zone. The bars represent, respectively, the time for reconstruction
accuracies of 1% and 0.1% along with the time for the REFPROP evaluations. All
timings are based on making 100,000 property evaluations at equally spaced points on
diagonal lines across the respective fluid zones (as indicated by the dashed lines on Fig. 9
for C0 2). The reconstruction timings are for the CO method. The added cost for the C'
and C2 methods is indicated later.

10C I Cartesian Table Look-up, 1%
Cartesian Table Look-up, 0.1%

REFPROP

102
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CO 2  H20 Air

Figure 14. Comparison of CPU time of adaptive Cartesian property reconstruction
and REFPROP calculation.

The timing evaluations in Fig. 14 immediately show the advantage of the reconstruction
procedure. In all cases, reconstruction is at least two orders of magnitude faster than the
complete REFPROP routines. The evaluation times for reconstruction are essentially the
same for all fluid types, all fluid regions, and for the two accuracy levels. This
insensitivity of evaluation time to accuracy level (table size) is a clear indication of the
effectiveness of the tree structure in the reconstruction table. By contrast, the evaluation
times for the REFPROP routines vary considerably with fluid type and fluid region
because the complexity of the underlying equations changes. Air, which is treated as a
mixture, is considerably more expensive to evaluate than the pure fluids. Because of the
timing variability in REFPROP, the smallest time ratio occurs in Zone I for H20 where
reconstruction is 85 times faster while the maximum advantage occurs for air where



reconstruction is as much as 2500 times faster. The savings achieved by the
reconstruction procedure would clearly be smaller for equations of state based upon
simpler algebraic equations, but even for the simplest equations, the procedure remains
competitive.
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Figure 15. Storage Comparison of different reconstruction methods. C0 2 ,
1% accuracy. Domain location: 500K < T < 1000K ; IMPa 5 p < IOOMPa.

The timing results in Fig. 14 are also tabulated in Table I along with the number of
refinement levels and the total number of cells in each zone. The times required for
making the 100,000 property evaluations are also given for an equally spaced table to
indicate the penalty incurred by the tree-structure. The cost of a tree-based reconstruction
is approximately 12% larger than that for the equally spaced database. The overhead
arises mainly from the coordinate transformation and local triangle selection within a
square. A numerical value of the ratio of the adaptive reconstruction time to the
REFPROP evaluation time is also included. The columns in Table I are defined in Table
II.
One caution in interpreting these comparisons is that REFPROP uses the Helmholtz
function which expresses fluid properties as functions of temperature and density as the
fundamental thermodynamic variable. Property evaluations in REFPROP based upon
pressure and temperature will therefore incur some penalty. To demonstrate that this is
not the major reason for the advantage of the adaptive method, the CO 2 properties
evaluation in Zone 2 was chosen as a representative comparison. The time required for
100,000 property evaluations at equally spaced points based upon pressure and
temperature was 76.5 s as noted in Table I. Similar evaluations, based upon density and
temperature required 45.1 s, a savings of 42 percent over the pressure and temperature
pair. Therefore for CFD codes that are based upon density and temperature, the CPU
advantages of the adaptive Cartesian method would be reduced by approximately a factor
of two, still providing a major savings. For codes based upon other variables pairs, the
speed-ups in Table I remain appropriate.



Table 1. Storage and Timing Comparisons for Properties Evaluation

Max No. No. Time(s) Time(s) Time(s) Time
Fluid Zone Lvl

Err Levels Points Cartes E.E.M* REFPROP Ratio

1% 10 22,246 0.438 0.375 77.686 177.4

0.1% 11 225,121 0.438 0.375 77.297 176.5

1% 17 25,990 0.422 0.375 76.532 181.4
2

0.1% 20 25,7841 0.422 0.375 76.250 180.7

1% 15* 15,9325 0.422 0.375 73.022 173.1
3

0.1% 15* 80,1151 0A38 0.375 73.250 167.2
CO 2

1% 15* 72,703 0.422 0.375 87.329 207.1
4

0.1% 15* 108,384 0.422 0.375 87.563 207.5

4 1% 5 86

(Liquid) 0.1% 7 1102

4 1% 10 5336

(Vapor) 0.1% 12 52,296

1% 10 28,391 0.438 0.375 36.234 82.7

0.1% 12 225,121 0.438 0.375 36.343 83.0
H,O

1% 9 871 0.406 0.375 186.107 458.4
2

0.1% 11 8049 0.422 0.375 186.796 442.6

1% 11 63,740 0.422 0.375 202.672 480.3

0.1% 12 79,3657 0.453 0,375 202.203 446.4
Air

1% 8 459 0.391 0.375 989.203 2530.0
2

0.1% 10 4184 0.406 0.375 989.532 2437.3

*: The lowest level allowed (for cases where discontinuity presents)

4: Equivalent Equal-sized Mesh (A uniform mesh refined to the deepest level)



Table II Column Information in Table I

Column Heading Information

I Fluid Fluid Type

2 Zone Zone

3 Max Err Maximum error of curve fit

No. Levels Number of refinement levels needed (or allowed in cases with property
discontinuity)

5 No. Points Number of points in the adaptive database

6 Cartes Time Time required for 100,000 property evaluations using adaptive database

7 Time(s) E.E.M. Time required for 100,000 property evaluations using equally spaced
database.

8 REFPROP Time Time required for 100,000 property evaluations using REFPROP

9 Time Ratio Ratio of REFPROP to adaptive database property evaluation time

Table Size Comparison of C'. C' and C' Reconstruction Methods. The above results
have shown the CPU time advantages of the adaptive reconstruction method. In the
present subsection, we compare the table sizes required for the C", C' and C2

reconstruction procedures. The comparisons are obtained for the rectangular
temperature-pressure region, 500K < T < 1000K, IMPa < p < IOOMPa, in CO 2 using an

error tolerance of I %. . In the lower pressure portion of this region, CO2 behaves as a
perfect gas, while in the upper regimes it is strongly supercritical (see Fig. 8). The sizes
of the storage tables for the three interpolation levels are given in Fig. 15. In computing
these tables, the Gibbs function and its first two derivatives were obtained from analytical
expressions within REFPROP but the high order derivatives (greater than two) were
obtained by numerical differentiation. The number of cells required for the C
reconstruction method was 1290, while the C' method decreased the table size to only 23
cells. The C' reconstruction, however, required 75 cells to achieve the same accuracy,
suggesting a sensitivity in the C2 reconstruction procedure to the high order derivatives.
This phenomenon may arise from two issues. First, the Gibbs function, rather than the
density and enthalpy themselves, is fitted in the C2 reconstruction and the density and
enthalpy are obtained by differentiating the Gibbs function. Second, the C2

reconstruction uses higher order polynomials that are more prone to oscillate and this
tendency may require increased resolution to realize a given accuracy.
To demonstrate that this trend in the storage size is not related to the method in which the
REFPROP evaluation are made, we have added in Fig. 15 companion reconstruction
results for a perfect gas using the same pressure-temperature region in CO2. Here, all
partial derivatives were computed analytically and the specific heats were taken as



constant. The perfect gas tables for C, C' and C2 reconstruction have 664, 14 and 42
mesh points respectively, again indicating a significant savings in moving from C"
reconstruction to its C' counterpart with a modest increase for C2 reconstruction.

Sample CFD Calculations

In the present section we present some representative computational results to
demonstrate the method. We begin with a one-dimensional computation that is used to
verify the method and to provide timings. We then present a two-dimensional example
that demonstrates some of the thermodynamic characteristics that are enabled by the
present formulation. These computations are based on the results of an in-house CFD
code. The code uses a second-order accurate, approximate Riemann solver in space with
a two equation turbulence model. The focus in these examples is on demonstrating the
efficiency and practicality of real fluid computations.

One-Dimensional Flow Computation. As an initial example of the timing realized with
the adaptive reconstruction method, we use a simple one-dimensional example of
subsonic flow through a convergent-divergent nozzle. The nozzle is symmetric about the
throat with the inlet and exit areas 1.25 times the throat area. The working fluid is chosen
as water with an inlet total pressure of 60 MPa and stagnation temperature of 750 K. The
back pressure at the outlet is 50 MPa. These parameters place the solution in Zone 2 of
the H20 property map on Fig. 14. A total of 200 cells are used in the calculation. The
convergence rates for this case using the C°, C' and C2 methods were originally shown in
Fig. 7 where we noted that the convergence with all three of these reconstruction methods
was identical to the convergence obtained by coupling the REFPROP routines directly
into the CFD code, so long as the triangulation depicted in Fig. 8 is used.
Correspondingly we showed that convergence on the triangulation of Fig. 2 stalled.
Although the number of iterations is essentially identical for the different property
evaluation methods, their CPU costs are significantly different.
Figure 16 shows the cumulative CPU time required for the computation as a function of
iteration number for 1000 iterations. The C reconstruction method results in the fastest
execution. Comparison of the results for the inconsistent and the consistent triangulation
methods indicates that the subdivided triangular mesh increases the CPU time by about
5% as compared to the diagonally divided triangles, indicating a minor overhead for
locating a particular triangle inside each square. The costs of the C' and C2 methods are
nearly equal and are approximately twice that of the Co method. The C2 method evaluates
all properties from a single ninth-order polynomial from while the C' method evaluates
properties from separate fifth-order polynomials for density and enthalpy. The
calculation based on the exact property evaluation from REFPROP is approximately 160
times slower than the CO method and 80 times slower than the C' and C2 methods, again
in keeping with the timing of the properties evaluation themselves.
The CPU time for a CFD calculation can be broken into two parts: the property
evaluation time and the equation solution time. The relative advantages of faster property
evaluation times clearly will decrease as the complexity of the equation solution
increases, and in particular as we move from one to three dimensions. The nominal cost



of the property evaluation by REFPROP in this region of the H20 map is about 450 times
that of the C integration method (see Table I). For this one-dimensional case, the CFD
calculation time ratio is 160. suggesting that the equation solution time is roughly 80
percent longer than the C& interpolation time in the CFD calculation. Experiments on a
PC show that the one-dimensional solver costs about 61.25P,s/(cellx iteration), and our

in-house 2D and 3D unstructured codes cost about 100.2 ps/(cell x iteration) and 200.9

yus/(cell x iteration) respectively. Assuming the property evaluation time does not
change when going from ID to 2D and 3D calculations, this indicates that the 2D
calculation with the C interpolation method will be 115 times faster than the direct
REFPROP evaluation calculation and the 3D calculation will be 66 times faster.
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Figure 16. CPU time comparison for different interpolation methods

The CPU time for a CFD calculation can be broken into two parts: the property
evaluation time and the equation solution time. The relative advantages of faster property
evaluation times clearly will decrease as the complexity of the equation solution
increases, and in particular as we move from one to three dimensions. The nominal cost
of the property evaluation by REFPROP in this region of the H20 map is about 450 times
that of the Co integration method (see Table I). For this one-dimensional case, the CFD
calculation time ratio is 160, suggesting that the ratio of equation solution time to
property evaluation time in a one-dimensional calculation is approximately 1.8.
Numerical computations show that the one-dimensional solver requires about
61.25s/(cellX iteration). Corresponding costs for two- and three-dimensional solutions
are 100.2 and 200.9 as/(cellx iteration) respectively. Assuming the property evaluation
time does not change when going from one to three dimensions, this suggests that a two-
dimensional calculation with CO interpolation method will be 115 times faster than the
direct REFPROP evaluation calculation and the three-dimensional calculation will be 66
times faster. Solutions based upon C' and C2 reconstruction will be about half this
amount.



Two-Dimensional Real-Fluid Example. The geometrical configuration for the 2-D
computation is again a C-D nozzle patterned after one designed for hypersonic flow
testing at ultra high pressures.28  The working fluid is air with upstream stagnation
conditions of 1700 MPa and 750 K. The density of air at these conditions is
approximately equal to that of water and the resulting acceleration through the choked
throat shows dramatic real-fluid characteristics. The convergent section of the nozzle is
very strongly converging and the inflow starts at low speeds.
We limit our results here to a Mollier chart for air showing the physical regime of interest
and comparisons between solutions of the real-fluid and corresponding perfect gas
computations at the same pressure and temperature. The Mollier diagram is shown on the
left half of Fig. 17 along with the h-s domain covered by the flow in the nozzle.
Specifically, the enthalpy and entropy values in all cells in the computational domain are
plotted on the h-s diagram superimposed upon the thermal database from REFPROP.
The solution forms a roughly triangular region. The left edge of this triangular region
corresponds to the thermodynamic path of the fluid on the centerline. As can be seen, the
fluid on the centerline undergoes an approximately constant entropy process. The upper
edge of the triangle corresponds to the fluid adjacent to the wall and shows its entropy
continues to increase while the enthalpy decreases slightly in agreement with classical
results for the adiabatic recovery temperature on a nozzle wall. The horizontal constant
pressure lines to the right side of the Mollier diagram correspond to the perfect gas region
where enthalpy is independent of pressure. The nearly vertical constant pressure lines on
the left side indicate a strong real-fluid effect of pressure on enthalpy. These lead to a
very different temperature pattern in the nozzle as the contours in the right half of Fig. 17
show.
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Figure 17. 2D calculation of ultra-high pressure flow through hypersonic nozzle. Left: Molier diagram and h-
s domain of solution; Right: Temperature along the nozzle for calculation with real fluid properties and perfect

The temperature distribution in the nozzle for a perfect gas calculation is compared with
that for the real-fluid calculation on the right half of Fig. 17. Here, the temperature in



every computational cell has been plotted at its appropriate axial location in the nozzle.
The left side of the plot shows the temperature for the perfect gas solution with the axial
coordinate running from left to right. The right side of the plot shows the results for the
real-fluid case with the axial coordinate running from right to left. There is clearly a
major difference between the two solutions. In both solutions, the upper bound on the
temperature at any axial location corresponds to the wall, while the minimum temperature
represents the value in the free stream. For the perfect gas, the temperature on the wall
(the upper bound) decreases slightly from its upstream value of 750 K, while for the real
fluid, the wall temperature rises rapidly throughout, reaching over 1400 K at the throat (x
= 0) and continuing to above 1800 K. Contrasting the increased wall temperature with
the nearly constant stagnation enthalpy for the real fluid calculation in the Mollier
diagram on the left plot of Fig. 17 demonstrates that the wall enthalpy for the real fluid
behaves like that for the perfect gas in that it remains essentially constant throughout the
nozzle. The wall temperature for the real-fluid solution, however, increases rapidly
because of the strong, real-fluid, pressure dependence of enthalpy. The minimum
temperature at any axial location is also lower for the real fluid than for the perfect gas,
again indicating how much the real-fluid thermodynamics differ from the perfect gas
assumption. As a final point, we note that both the convergence rates and the CPU times
for the perfect gas and real fluid computations were nearly identical, thus verifying that
the reconstruction procedure provides an effective thermodynamic interface for real-fluid
computations.

Hybrid RANS/LES Modeling in High Pressure Fluids

Contemporary turbulence modeling efforts emphasize large eddy simulations (LES) and,
more recently, hybrid RANS/LES models, but efforts in these areas have been largely
limited to incompressible fluids and perfect gases. Application of these methods to
arbitrary fluids requires careful adaptation to ensure that the thermodynamics, the
numerics and fluid dynamics are properly coordinated to give accurate and efficient
results. Our focus here is on developing methods that can be applied to practical T&E
applications to take into account flow fields that contain both traditional high Reynolds
number boundary layers and regions with large scale unsteadiness that is not accurately
resolved by unsteady RANS methods. For this reason, our focus is on hybrid RANS/LES
models that are compatible with traditional second-order CFD algorithms.

To adapt the generalized fluid dynamic formulation outlined above to hybrid RANS/LES
modeling, it is necessary to reduce the level of artificial dissipation in the algorithm. The
numerical dissipation in characteristics-based, upwind methods is determined by the
eigenvalues of the problem and the time-marching derivative. The artificial pseudo-time
coefficient matrix offers flexibility for controlling this dissipation. The flux formulation
for a general upwind finite volume approach can be interpreted as the average of the
fluxes on either side of the cell interfaces augmented by an artificial dissipation term,

E = EL + ER)-I-I'A(QR -QPL)l2. Clearly, the magnitude of the artificial

dissipation is proportional to the coefficient matrix, r. The key requirements on this
term are that it provide sufficient dissipation to prevent solution instability and that it



scale properly at various flow limits including low speeds, low Reynolds numbers and
high Strouhal numbers. To reduce the artificial dissipation, we introduce a modified
dissipation matrix that improves accuracy while maintaining convergence, so that the

numerical flux becomes, k =I(E. + ER)-a DI(QpR -QpL) where D is a diagonal
2 2

matrix in which one entry corresponds to the largest pseudo-acoustic value and the
remainder are the particle speed, while a is a parameter to be adjusted. Analytical and
numerical experiments suggest that the scheme is unstable for a _ I and becomes stiff as
a - 0. The value a = 0.5 represents a compromise between stability and accuracy and
is used in the calculations below.

The modified artificial dissipation is first verified by comparing with the analytical
solution for an infinite array of counter-rotating vortices whose amplitudes decay with
time. The results on the left of Fig. 18 for inviscid flow and Re = 100 were computed
with CFL = 0.1. The standard ('non-preconditioned') calculation shows that both cases
decay rapidly demonstrating the accepted observation that unmodified upwind schemes
are unacceptable for DES applications. When 'characteristic dissipation' is used, the
inviscid case decays by about 1% in two non-dimensional time units, while the Re = 100
case decays by 4.7%. Although this is a major improvement, the decay rates are still too
fast. With the modified dissipation, the inviscid case decays by approximately 0.04% in
two non-dimensional time units while the Re = 100 case decays approximately 3.7%,
slightly slower than the exact solution. Accurate calculations require that both the CFL
and the VNN numbers be controlled and this small error becomes larger as Re is reduced.
To demonstrate accuracy at lower Re numbers we show on the right side of Fig. 18
results for a CFL of 0.0036 for Reynolds numbers of infinity, 100, 10 and 1. At Re = 1,
CFL =0.0036 corresponds to VNN = 0.36, while at CFL = 0.1 and Re = 100 the von
Neumann number is 0.1. The results at this viscous-controlled time step indicate the
modified dissipation continues to provide accuracy at all Reynolds numbers. Overall, the
results of the Taylor vortex problem suggest the modified dissipation provides a
reasonable solution for large-scale motions.
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Figure 18. Rate of decay of kinetic energy at different Reynolds numbers for Taylor
vortices problem. Left: CFLu = 0.1; Right: CFLu = 0.0036. Comparison with analytical

solution.

The scaling constant, CDES, in the DES implementation was calibrated by comparing

results against the decay of homogeneous turbulence downstream of a grid as reported by
Comte-Bellot and Corrsin. Figure 19 shows the energy spectra for calculations using the
characteristic and modified dissipation terms along with the experimental results and a

line showing the E(r) - X-5/3 slope. The value of the DES coefficient, CDES, in these

cases is 0.78. It can be clearly seen that the modified dissipation significantly improves
the simulation. When CDES is calibrated against experiment (the right side of Fig. 19)
the turbulence decay is commensurate with the experiment. In Fig. 19 C0, of 0.5
appears to give the best agreement with experiment and is adopted in the solutions given
below.

Representative DES solutions are compared with unsteady RANS calculations in Fig. 420
for a shear layer representing the mixing between air and nitrogen at high pressures. The
results indicate substantially better resolution for the modified scheme. Efforts are
present are aimed at extending these results to larger grid aspect ratio cases (above 100)
to enable extensions to higher Reynolds numbers.
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Figure 19. Energy spectra in decaying homogeneous turbulence for different

preconditioning methods (left) and for different CDES values (right).



Figure 20. Comparison of RANS (eft) and DES (right) calculations for shear layer mixing
in high pressure flow.
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